INTRODUCTION
Hingu is resinous exudate of *Ferula narthex* Bioss belonging to family Umbelliferae. In Ayurveda Hingu is an ingredient of various formulations like Hingwadya Ghrita and Bhootabhirava Rasa which are indicated by various authors in the management of Apasmara (Epilepsy) and Grahadosha. Hingu is mentioned by Bhavaprakasha as “Apasamar Haram Param” i.e. drug of choice in Apasamar. Hence to validate the effect of hingu in the management of Apasama on the basis of current research methodology this study was conducted to screen the antiepileptic effect of alcohol and aqueous extract of hingu on albino rats using Maximal Electro-shock method.

Aims and objectives
Screening of Antiepileptic activity of Hingu (*Ferula narthex* Bioss) was carried out on albino rats in MES induced convulsions.

MATERIALS AND METHODS
Test Drug Hingu was procured from four different markets viz Belgaum, Mumbai, Pune and Mysore. All these samples were subjected to Physico-chemical and Phytochemical tests. Sample of API standards was selected for the study. Experimental studies were conducted in the Department of Pharmacology, K.L.E. University’s J.N. Medical College Belgaum, in Karnataka.

Standardization of the test drug
Test drug was subjected for physico-chemical and phytochemical studies including HPTLC and quantitative resin estimation. After ensuring the quality standards as per the API, the drug was taken for Experimental study.

Dose fixation
LD50 study of both extracts on albino mice revealed that the dose up to 5000 mg/kg body weight did not produce any symptoms of toxicity so it was evident that till 5000 mg/kg body weight dose of Hingu is safe. Hence 1/10th of this dose i.e. 500 mg/kg body weight was considered as therapeutic dose for animal experiment.

Experimental study

Housing and feeding of animals
Rats of either sex were procured from Animal House KLEU J N Medical College weighing between 110 gm to 180 gm and maintained at room temperature of 25°C, with 12 hrs day and dark cycles. The standard laboratory diet was given with an unlimited supply of drinking water.

Preparation of animals
The animals were randomly selected, marked to permit individual identification and kept in cages for one week prior to the experiment in order to allow for acclimatization and laboratory conditions.

Screening of anti-epileptic activity

Preparation of doses /vehicle
The aqueous extract was semisolid hence it was triturated with distilled water and alcohol extract was triturated with 2% Tragacanth mucilage to prepare dose.

Administration of doses
Animals were fasted for 24 hrs prior to dose administration. The test drugs were orally administered in a single dose by using a stomach tube.

MES Method
An electrical stimulus of sufficient intensity was used to induce maximal seizure by means of an external device stimulator or convulsiometer. A supra maximal strength of 150mA was used 0.2 seconds. The stimulus was applied via corneal or ear clip electrodes. MES seizures remain the primary screening for potential antiepileptic activity.

Threshold test
The ability of the drug to alter the seizure threshold for tonic hind limb extension was determined as the current or voltage inducing hind limb extension in 50% of the animals.
Procedure

Animals were divided into four groups each consisting of 6 rats. The first group was used as control and for the second group phenytoin as a standard drug was given. The groups third and forth were given aqueous and alcoholic extract of test drug respectively. The animal was held properly, electrodes were attached to ear pinna. Then the prescribed current 150mA was applied to the electrodes and different stages of convulsions were noted as a) tonic flexion b) tonic extensor phase c) clonic convulsions d) stupor e) recovery or death. The time spend by each animal in each phase was recorded. Injection phenytoin was given intra-peritoneal to the second group, Aqueous and Alcoholic extract was given orally to the third and forth group respectively. After 30 minutes the animals were subjected for electro convulsions as described earlier. Reduction in time or abolition of tonic extensor of MES convulsions was recorded.

RESULTS

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Animals were divided into four groups each consisting of 6 rats. The first group was used as control and for the second group phenytoin as a standard drug was given. The groups third and forth were given aqueous and alcoholic extract of test drug respectively. The animal was held properly, electrodes were attached to ear pinna. Then the prescribed current 150mA was applied to the electrodes and different stages of convulsions were noted as a) tonic flexion b) tonic extensor phase c) clonic convulsions d) stupor e) recovery or death. The time spend by each animal in each phase was recorded. Injection phenytoin was given intra-peritoneal to the second group, Aqueous and Alcoholic extract was given orally to the third and forth group respectively. After 30 minutes the animals were subjected for electro convulsions as described earlier. Reduction in time or abolition of tonic extensor of MES convulsions was recorded.</th>
</tr>
</thead>
</table>

DISCUSSION

In Ayurvedic literature Hingu is described as one the best drug for the management of Apasmara where convulsions are the Cardinal clinical symptoms. Experimental study revealed that aqueous extract of Hingu showed significant results in controlling the convulsions but as compared to the standard drug Phenytoin results were not significant. In Ayurvedic texts Hingu was indicated to treat Various CNS related diseases often in the form of medicated ghee. This may be due to Hingu may cross brain tissues through the fat media than aqueous media.

CONCLUSION

Aqueous extract of hingu at 500 mg/kg body weight shown significant (p < 0.001) protection against shock-induced convulsions. Alcohol extract shown lesser protection at same dose compare to the aqueous extract. The results of test groups compared with standard group were not statistically significant.

REFERENCES

4. The Ayurvedic Pharmacopoeia of India VOL-1, 1st Ed. Reprint 2001 Govt Of India, Ministry of Health and Family welfare dept of Indian systems of medicine.
5. OECD Guide lines No 420

Table 1: Statistical results showing Mean of the Flexion, Extension, Clonus and Stupor

<table>
<thead>
<tr>
<th></th>
<th>Control Group</th>
<th>Standard Group</th>
<th>Alcohol</th>
<th>Aqueous</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Distilled water 1 ml/rat Orally</td>
<td>25mg/kg wt ip</td>
<td>500mg/kg wt Orally</td>
<td>500mg/kg wt Orally</td>
<td></td>
</tr>
<tr>
<td>Flexion</td>
<td>3.32 Sec</td>
<td>0.18 Sec</td>
<td>2.28 Sec</td>
<td>1.29 Sec</td>
<td>p<0.001</td>
</tr>
<tr>
<td>Extension</td>
<td>12.37 Sec</td>
<td>0.29 Sec</td>
<td>7.03 Sec</td>
<td>4.03 Sec</td>
<td>p<0.001</td>
</tr>
<tr>
<td>Clonus</td>
<td>6.68 Sec</td>
<td>10.71 Sec</td>
<td>2.22 Sec</td>
<td>1.59 Sec</td>
<td>p<0.001</td>
</tr>
<tr>
<td>Stupor</td>
<td>159 Sec</td>
<td>25.7 Sec</td>
<td>111 Sec</td>
<td>96.67 Sec</td>
<td>p<0.001</td>
</tr>
</tbody>
</table>

Figure 1: Abolition of Hind Limb Extension

Source of support: Nil, Conflict of interest: None Declared