Research Article
www.ijrap.net

PHYSICOCHEMICAL AND PHYTOCHEMICAL STUDIES OF PSIDIUM GUAJAVA L.
Namrata Dwivedi 1, Geeta Patel 1, Neelesh Dwivedi 2 and LP. Tripathi 3*
1Research Scholar, Faculty of Science & Environment, Mahatma Gandhi Chitrakoot Gramodaya Vishwavidyalaya, Chitrakoot, Satna, (M.P.), India
2Research Officer, JRD Tata Foundation of Research in Ayurveda & Yoga Sciences, Chitrakoot, India
3Professor & Dean, Faculty of Science & Environment, Mahatma Gandhi Chitrakoot Gramodaya Vishwavidyalaya, Chitrakoot, Satna, (M.P.), India

Received on: 27/12/16 Revised on: 28/01/17 Accepted on: 03/02/17

*Corresponding author
E-mail: tripathi.lp@gmail.com

DOI: 10.7897/2277-4343.08121

ABSTRACT

Psidium guajava L. is a small tree belongs to Myrtaceae family, traditionally used in treatment of several diseases like inflammation, diabetes, hypertension, wounds, pain and fever. The present study was carried out to investigate the physico-chemical properties and phytochemical analysis of leaves, stem bark and root of Psidium guajava L. Phytochemical analysis shows the presence of flavonoids, tannins, saponins, triterpenes, saponins; cardiac glycosides steroids, alkaloids and carbohydrates. The studies of these parameters ascertain the claimed medicinal or therapeutic effects of plants secondary metabolites and pigments that can have therapeutic actions in humans and will be boosting the research in the development of herbal medicine for combat diabetes.

Key words: Psidium guajava, diabetes, phytochemical analysis, HPTLC

INTRODUCTION

Medicinal plants have been used in primary health care over many centuries before the advent of modern medicine. Psidium guajava L belongs to Myrtaceae family is popularly known as ‘poor man's apple of the tropics, has a long history of traditional use for a wide range of ailments. It is a low evergreen tree or shrub 6 to 25 feet high, with wide-spreading branches and square, downy twigs. It is a native of tropical America. It is a common vegetation cover by roads and in waste places in Hawaii. Guava is a tropical and semitropical plant. It is well known in the islands for its edible fruit. It is common in the backyards1.

The fruit as well as its juice is freely consumed for its great taste and nutritional benefits. Much of the traditional uses have been validated by scientific research. The extracts of root, bark and leaves of guava are used as folk medicine to treat gastroenteritis, vomiting, diarrhoea, dysentery, wounds, ulcers, toothache, coughs, sore throat, inflamed gums, and a number of other conditions2. Fruits are known to be a source of antioxidant3. Leaves contain, phenolic compounds, isoflavonoids, gallic acid, catechin, epicatechin, rutin, naringenin, kaempferol having hepatoprotective, antioxidant, anti-inflammatory, antispasmodic, anticancer, antimicrobial, anti-hyperglycemic, analgesic actions4. Psidium guajava leaves showed that tannin, phlobatannins, saponin, flavonoids, steroids, terpenoids, triterpenoids, carbohydrate, polyphenol and glycoside present in both extract5.

Quality can be defined as the status of a drug that is determined by identity, purity, content and other chemical, physical or biological properties, or by the manufacturing processes6. Quality control is a term that refers to processes involved in maintaining the quality and validity of a manufactured product. The plant was used for long time in Indian tradition, but it wasn’t studied to determine its chemical composition. The plants have complicated composition and the phytochemical studies can be performed using chromatographic and spectral methods that can separate and characterize the different compounds from complex matrix. Within a decade, there were several dramatic advances in analytical techniques including TLC, UV, NMR and GC-MS that were powerful tools for separation, identification and structure determination of Phytochemical7. The present study deals with physicochemical and phytochemical investigations of leaf stem bark and root of Psidium guajava L.

MATERIALS AND METHODS

Plant material

The plant specimens (leaves, root and stem bark of Psidium guajava L.) for the present study were collected from university campus at MCGV, Chitrakoot, Satna, MP, India and authenticated by Dr. R.L.S. Sikawar, Taxonomist, Deependayal Research institute. A voucher specimen no.101 is kept at Herbarium of Research Lab, M.G.C.G.V. Chitrakoot for further reference. The All chemicals and reagents used to include the solvents were of analytical grade.

Preparation of extracts

All the plant specimens were air dried at room temperature for one week to get consistent weight. The dried samples were ground to powder. 10 gm of each sample were extracted with 100 ml of methanol and water using cold maceration method8. The filtrate was concentrated under reduced pressure using rotary vacuum evaporator (Buchi type).
Physicochemical Analysis

The extracts of the plants were standardized according to WHO guidelines and other Pharmacopoeial procedures. Physicochemical standardization which includes extractive values in different solvents, total ash value, acid insoluble ash value, loss on drying, pH values (1% and 10% solutions) were checked in triplicate according to the prescribed Standard methods in Indian Pharmacopoeia8-13.

Preliminary Phytochemical Screening

The physiochemical investigation of the ethanol and water extracts of Psidium guajava was carried out with standard procedures14, 15 for determining the presence and/or absence of phytochemicals.

Quantitative Analysis

(A) Determination of total polyphenol

The concentration of phenolics in methanol fraction of P. guajava was determined with the Folin-Ciocalteu’s reagent (FCR) using spectrophotometric method16, 17. Each sample (1 mL) was mixed with 0.5 mL FCR (diluted 1:10, v/v) followed by 2 mL of sodium carbonate (20.00%, v/v) solution. A set of standard solutions of gallic acid (20, 40, 60, 80 and 100 μg/mL) were prepared. The absorbance was measured for test and standard solutions against the reagent blank at 765 nm after incubation at room temperature for 90 min. Results were expressed as mg of GAE/gm of extract.

(B) Determination of total proteins

Extraction of Protein from sample

Extraction is carried out with buffers used for the enzyme assay. Accurately weighed 500 mg of the sample and ground well with a pestle and mortar in 5-10 ml of the buffer. Centrifuged (SORVALL RC 5B plus) 20 minutes at 10,000 rpm and collected supernatant used for protein estimation.

Standard Protein solution

Weighed accurately 50 mg of bovine serum albumin (fraction V) and dissolved in distilled water and the volume was made up to 50 ml in a standard flask. Diluted 10 ml of the stock solution to 50 ml with distilled water in a standard flask. 1 ml of this solution contains 200 μg protein.

Estimation of protein

Pipetted out 0.2, 0.4, 0.6, 0.8 and 1 ml of the working standard into a series of test tubes and 0.1 ml and 0.2 ml of the sample extract in two other test tubes. The volume was made to 1 ml in all the test tubes. A tube with 1 ml of water serves as the blank. Added 5 ml of Alkaline copper solution to each tube including the blank. Mixed well and allowed standing for 10 minutes. Then added 0.5 ml of freshly prepared Folin-Ciocalteau reagent mixed well and incubated at room temperature. Kept in the dark for 30 min. A blue color is developed. Took the readings at 660 nm by UV spectrophotometer and calculated the amount protein in the sample. Drawn a standard graph and expressed the amount of protein in mg/gm of sample.18

(c) Determination of total saponin

Determination of total saponin was done using anisaldehyde reagent. Sample solution was prepared in water. For total saponins estimation 500 μl of sample, 500 μl of 0.5% anisaldehyde reagent were mixed and kept aside for 10 min. Later, 2 ml of 50% sulphuric acid reagent was added and tubes were mixed. Tubes were then kept in water bath with constant temperature of 60°. After 10 min tubes were cooled and absorbance was taken at 435 nm by UV spectrophotometer. The amount of saponins19 was calculated as saponin equivalent from the calibration curve of standard sponging (100-1000 μg/ml).

Determination of alkaloids

Calibration curve

The calibration curve was obtained with bismuth nitrate pentahydrate stock solution. Series dilutions of the stock solution were made by pipetting out 1, 2, 3, 4, 5, 6, 7, 8 and 9 ml of stock solution into separate 10 ml standard flask and diluting to volume with distilled water. A 1 ml amount of this solution was taken and 5 ml thiourea solution was added to it the absorbance value of the yellow solution was measured at 435 nm against colorless reagent blanks20.

Assay for alkaloids

A 5 ml amount of the extract/solution was taken and the pH was maintained at 2-2.5 with dilute HCL. A 2 ml amount of Dragendorff's Reagent was added to it, and the precipitate formed was centrifuged. The centrifuged was checked for complete precipitation by adding DR. After centrifugation the centrifuged was decanted completely and meticulously, the precipitate was further washed with alcohol. The titrate was discarded and the residue was then treated with 2 ml disodium sulfide solution. The brownish black precipitate formed was then centrifuged. completion of precipitation was checked by adding 2 drops of disodium sulfide. The residue was dissolved in 2 ml nitric acid with warming if necessary this solution was diluted to 10 ml in a standard flask with distilled water. 1 ml was then pipetted out and 5 ml thiourea solution was added to it, the absorbance was measured at 435 nm against the blank containing nitric acid and thiourea. The amount of bismuth present in the solution was calculated using calibration curve. The amount of bismuth corresponds to the number of alkaloids present.

(E) High performance thin layer chromatography

The methanolic extracts of the samples T1 (leaf) T2 (stem bark) and T3 (root) of Psidium guajava L. were subjected to HPTLC fingerprint profile to check the presence of different phytoconstituents. HPTLC Fingerprinting was carried out on precoated silica gel HPTLC aluminium plates 60F254 (10 cm x 10 cm, 0.2 mm thickness, 5-6 μm particle size, E-Merck, Germany) by using CAMAG HPTLC System (Switzerland). 4 μL and 6 μL of each of the extract was spotted as bands of 8 mm width by using a LINOMAT 5 Sample Applicator fitted with a 100 μL Hamilton Syringe. The plates were developed using Toluene: ethyl acetate (7:3) as a mobile phase in CAMAG twin-trough chamber filled with filter paper and pre-saturated with 10 ml mobile phase. The resulted plates were dried in air and photo documentation was done at ultraviolet light at 254 nm, 366 nm and day light using CAMAG REPORSTAR 3 equipped with WINCATS Software. Numbers of bands, color of separated compound and RI values were recorded21-22.
Table 1: Organoleptic Characters

<table>
<thead>
<tr>
<th>SN</th>
<th>Parameters</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Leaves</td>
<td>Stem bark</td>
</tr>
<tr>
<td>1</td>
<td>Color</td>
<td>Green</td>
</tr>
<tr>
<td>2</td>
<td>Odour</td>
<td>Characteristic</td>
</tr>
<tr>
<td>3</td>
<td>Taste</td>
<td>Bitter</td>
</tr>
<tr>
<td>5</td>
<td>Texture</td>
<td>Fine</td>
</tr>
</tbody>
</table>

Table 2: Physicochemical parameters of *Psidium guajava*

<table>
<thead>
<tr>
<th>S.N.</th>
<th>Parameters</th>
<th>Value (n=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Leaves</td>
<td>Stem</td>
</tr>
<tr>
<td>1</td>
<td>Loss on drying at 105°C (%w/w)</td>
<td>6.09</td>
</tr>
<tr>
<td>2</td>
<td>Total ash value (%w/w)</td>
<td>6.39</td>
</tr>
<tr>
<td>3</td>
<td>Acid-insoluble ash value (%w/w)</td>
<td>5.36</td>
</tr>
<tr>
<td>4</td>
<td>Water soluble extractive value (%w/w)</td>
<td>20.2</td>
</tr>
<tr>
<td>5</td>
<td>Alcohol soluble extractive value (%w/w)</td>
<td>11.35</td>
</tr>
<tr>
<td>6</td>
<td>pH (Filter of 10% w/v aqueous solution)</td>
<td>4.77</td>
</tr>
</tbody>
</table>

The results are expressed as mean (n=3) ± Standard deviation (SD)

Table 3: Phytochemical Analysis

<table>
<thead>
<tr>
<th>Phytochemicals</th>
<th>Tests</th>
<th>Leaks</th>
<th>Stem bark</th>
<th>Root</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ethanol extract</td>
<td>Aqueous Extract</td>
<td>Ethanol extract</td>
<td>Aqueous extract</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>Anthrone test, Fehling test</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Acetone</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Saponins</td>
<td>Foam tests</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Alkaloids</td>
<td>Dragendorff’s test, Wagner’s test</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Steroids</td>
<td>Saitkowski tests</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Flavanoids</td>
<td>Shinoda test</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Saponins</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Tannins</td>
<td>5% FeCl3</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Amino acids and</td>
<td>Biurate test</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Proteins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Quantitative estimation of Phytochemical Analysis

<table>
<thead>
<tr>
<th>SN.</th>
<th>Phytochemical</th>
<th>Concentration in ug/ml</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>leaf</td>
<td>Stem bark</td>
</tr>
<tr>
<td>1</td>
<td>Polyphenol</td>
<td>1.004</td>
<td>1.1851</td>
</tr>
<tr>
<td>2</td>
<td>Protein</td>
<td>2.3569</td>
<td>3.5166</td>
</tr>
<tr>
<td>3</td>
<td>Saponin</td>
<td>4.5314</td>
<td>6.9930</td>
</tr>
<tr>
<td>4</td>
<td>Alkaloid</td>
<td>18.499</td>
<td>15.4667</td>
</tr>
</tbody>
</table>

Table 5: Rf values color of the bands resolved in test solutions of *Psidium guajava* Linn.

<table>
<thead>
<tr>
<th>Mobile phase: Toluene: Ethyl Acetate (9:1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>254nm</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>366nm</td>
</tr>
<tr>
<td>366nm AD</td>
</tr>
</tbody>
</table>
Figure 3: Calibration curve for alkaloids

Figure 4: Calibration curve for total polyphenol

Fig-a. Observed at 254 nm

Fig-b. at 366 nm

Fig-c. after derivatization at 366nm

Tracks=Where, T1, T2 = P. guajua leaf, T3, T4 = P. guajua stem bark and T5, T6 = P. guajua root

Plate 1: HPTLC Finger print profile
Photo documentation of chromatograph of *Psidium guajana* L. (leaf)
RESULTS AND DISCUSSION

In present study, the leaves, stem bark and root of *Psidium guajava* L were evaluated for its physicochemical and phytochemical aspects. Organoleptic parameters revealed that the powder of leaves, stem bark and root of *Psidium guajava* are green, brown and reddish brown in color, with the characteristic odour, bitter taste and fine and hard texture (Table 1).

Physicochemical investigations for all parts of drug powder were performed for moisture content, ash content, acid insoluble ash, water soluble extractive; alcohol soluble extractive, pH and the results were tabulated in (Table 2). The results are expressed as mean (n=3) ± Standard deviation (SD). The total ash value is an indicative of total amount of inorganic material after complete incineration and the acid insoluble ash value is an indicative of silicate impurities, which might have arisen due to improper washing of drug. Ash value is useful in determining authenticity and purity of drug and also these values are important quantitative standards. The extractive values names water soluble and alcohol soluble indicates the number of active constituents in given amount of plant material when extracted with respective solvent. The loss on drying value obtained is an indicative of amount of moisture present in the drug. pH of 10% w/v solution revealed that the formulations are acidic. The less value of moisture content could prevent bacterial, fungal or yeast growth.

The results of preliminary phytochemical screening in the methanolic and water extracts of the drugs showed the presence of carbohydrates, flavonoids, alkaloids, resin, saponins and tannins (Table 3) which could make the drug useful for treating different ailments as having a potential of providing useful drugs for human use.

The quantitative analysis of phenolic contents, protein, saponin and alkaloid were carried out using spectrophotometer and results are given in (Table 4). The total phenolic contents in the examined plant extracts is expressed in terms of gallic acid equivalent (the standard curve equation: \(Y=0.05346x + 0.99843 \)) and the saponin contents are expressed in terms of gallic acid equivalent (the standard curve equation: \(Y=0.07150x + 0.01277 \)).

A simple qualitative HPTLC analysis was performed and RF values were recorded. HPTLC Plate shows two bands at RF 0.19 and 0.55 for test sample T1 & T2; four bands at RF, 0.19, 0.31, and 0.55 under 254 nm; no bands observed for T5 & T6. Similarly, six spots at RF 0.16 (blue), 0.31 (blue), 0.40 (blue), 0.48 (blue), 0.57 (red), 0.62 (sky blue) and 0.75(red) for T1 &T2; five spots at RF 0.16, 0.40 (red), 0.48 (blue), 0.68 (blue), 0.82 (red) for T3 &T4 and six spots at RF 0.16 (red), 0.31 (red), 0.44 (light red), 0.68 (red), 0.82 (red) for T4 &T5 were observed under 366nm. After derivatization with 5% methanolic H2SO4 two spots at RF 0.17 (blue) , 0.32 (light blue), 0.40 (light blue), 0.56 and four spots at Rf 0.06 light (red), 0.17 (faint blue), 0.40 (light yellow) and 0.56 were resolved under 366nm. The results of Rf values and colors of the resolved bands were shown in Table -5 & Plate-1(Fig- a, b & c). The current findings can be used as a reference standard for identification of genuine drug with same ingredients. Further marker based identification and pharmacological studies enhance its therapeutic potential to maintain Diabetes Mellitus.

CONCLUSION

The present study was carried out as per WHO/Ayurvedic Pharmacopoeial standards for various standardization parameters such as organoleptic, physicochemical parameters like total ash, acid insoluble ash, water & alcohol soluble extractive values, loss on drying, phytochemical analysis. Presence of various phyto-constituents can serve as basis for screening of different pharmacological activities, investigation and further research. Total phenol, protein, alkaloid and saponin contents were investigated in the drug. The pharmacological action of these plant drugs will be determined by the nature of these chemical compounds which are responsible for the desired therapeutic properties and definite physiological effects. HPTLC fingerprinting profile is very important parameter of herbal drug standardization for the proper identification of medicinal plants. The study of these parameters will be boosting the research in the development of herbal medicine for combat diabetes.

ACKNOWLEDGEMENT

Authors are thankful to Deendayal Research Institute, Chitrakoot for providing analytical facilities to carry out experiments and are also express highly indebtedness.

REFERENCES

10. Anonymous. Quality Control Manual for Ayurvedic, Siddha and Unani medicines. Government of India, Department of

Cite this article as:
http://dx.doi.org/10.7897/2277-4343.08121

Source of support: Nil, Conflict of interest: None Declared

Disclaimer: IJRAP is solely owned by Moksha Publishing House - A non-profit publishing house, dedicated to publish quality research, while every effort has been taken to verify the accuracy of the content published in our Journal. IJRAP cannot accept any responsibility or liability for the site content and articles published. The views expressed in articles by our contributing authors are not necessarily those of IJRAP editor or editorial board members.