

Research Article

www.ijrap.net

(ISSN Online:2229-3566, ISSN Print:2277-4343)

VALIDATION OF STABILITY INDICATING RP-HPLC METHOD FOR SIMULTANEOUS ESTIMATION OF GLECAPREVIR AND PIBRENTASVIR BY USING ANALYTICAL QUALITY BY DESIGN (AQBD) METHOD

Nithiyananthan K¹*, Prasada Rao KVS² ¹Acharya Nagarjuna University, Guntur, Andhra Pradesh, India ²Rahul Institute of Pharmaceutical Sciences and Research, Chirala, Andhra Pradesh, India

Received on: 22/08/23 Accepted on: 16/10/23

*Corresponding author E-mail: nithimpharm87@gmail.com

DOI: 10.7897/2277-4343.1405140

ABSTRACT

The quantitative measurement of Glecaprevir and Pibrentasvir has been created using a simple, quick, precise, sensitive, and reproducible reverse-phase high-performance liquid chromatography (RP-HPLC) method. It is more difficult to analyse varying amounts of pharmaceutical active medicinal ingredients in dosage forms without interferences. Therefore, the objective of the current work is to estimate Glecaprevir and Pibrentasvir simultaneously by adopting an Analytical Quality by Design (AQbD), a rotatable central composite-based technique using RP-HPLC-based method development and validation. Glecaprevir and Pibrentasvir were separated by chromatography using a Kinetex RP-18 Column (100x4.6mm, 2.6µ) column and a mobile phase made up of Acetonitrile: 0.1% tri fluoro acetic acid in a ratio of 26.464:73.536 v/v. The flow rate was 1.0 ml/min, and a photodiode array detector operating at room temperature was used to detect absorption at 236 nm. ICH criteria have been used to validate the offered techniques' linearity, accuracy, precision, and other attributes. The degradation study's findings showed that the medications deteriorated in high-stress situations. The chemical and pharmaceutical sectors might easily implement this unique AQbD-based analytical technique for routine analysis without any regulatory constraints.

Keywords: RP-HPLC, Analytical quality by design (AQbD), Central Composite Design, Glecaprevir and Pibrentasvir

INTRODUCTION

For most people with chronic hepatitis C, Glecaprevir-Pibrentasvir offers a powerful treatment alternative, including an 8-week option for those who have never received treatment. It is the first pangenotypic NS3/4A protease inhibitor-NS5A inhibitor combination to be approved. Glecaprevir-Pibrentasvir is a fixeddose prescription drug used to treat adults and children three years of age and older with chronic (lasting for a very long time) hepatitis C virus (hep C): Infections of Genotypes (GT) 1, 2, 3, 4, 5, or 6 that are not cirrhotic or that are cirrhotic but have compensated; Infections of Genotypes (GT) 1 that were previously treated with a regimen that includes either an NS3/4A protease inhibitor or a hepatitis C NS5A inhibitor, but not both ¹.

The NS3/4A protease inhibitor Glecaprevir stops the cleavage of the HCV polyprotein. A common HCV genotype one variant with mutations (at Q80, R155, and D168) that confer resistance to older-generation HCV protease inhibitors shows significant in vitro activity (on the order of less than or equivalent to 5 nanomolar). The next-generation NS5A inhibitor Pibrentasvir (PIB, formerly ABT-530), which maintains strong antiviral activity against common HCV NS5A single-position variants that confer resistance to first-generation NS5A inhibitors such as Daclatasvir, Dedipasvir, and Ombitasvir is available now².

Due to its popularity, evaluating the Glecaprevir-Pibrentasvir combination is of utmost necessity. This study validated the Glecaprevir-Pibrentasvir by analytical quality by design (AQbD) method using Reverse Phase High-Performance Liquid Chromatography (RP-HPLC).

MATERIALS AND METHODS

Drugs, chemicals, solvents, instruments and software

Glecaprevir and Pibrentasvir were generously gifted from the Shree Icons laboratories in Vijayawada, India. HPLC grade tri fluoro acetic acid (TFA) was purchased from Thermo Fisher Scientific (Maharashtra, India). HPLC grade acetonitrile from Rankem Fine Chemicals Limited (New Delhi, India).

The High-performance liquid chromatographic (HPLC) system utilised for the whole analysis was Waters E 2695 HPLC (Wilmslow, England), united with a double solvent manager with a photodiode array detector (PDA) along with an autosampler. Unichrome ultrasonic baths have been used to solubilise and degas the sample and solvents. The pH of the mobile phase was adjusted with an Eutech Digital pH Meter (Maharashtra, India).

Waters HPLC system unified with Empower 2.0 software for data management. AQbD was developed using Design-Expert[®] trail version 13 (Stat-Ease Inc., Minneapolis-USA).

Determination of Working Wavelength (λ_{max})

In the simultaneous estimation of two drugs, isosbestic wavelength was used. The isosbestic point is the wavelength where the molar absorptivity is the same for two interconvertible substances. So, this wavelength was used in simultaneous estimation to estimate two drugs accurately.

The wavelength of maximum absorption of the solution of the drugs in a mixture of Acetonitrile and 0.1% TFA (30:70) was

scanned using a PDA Detector within the wavelength region of 200–400 nm against Acetonitrile and 0.1% TFA (30:70) as blank. The absorption curve shows an isosbestic point at 236 nm. Thus, 236 nm was selected as the detector wavelength for the HPLC chromatographic method.

Chromatographic conditions

Several trials were carried out during the selection of chromatographic conditions, and the best trial was selected for the optimised method.

Preparation of standard solution

Accurately weigh and transfer 40 mg of Pibrentasvir and 100 mg of Glecaprevir working standard into a 100 ml clean, dry volumetric flask; add diluent and sonicate to dissolve it completely and make volume up to the mark with the same solvent.

Further, pipette 5 ml of the above stock solutions into a 50 ml volumetric flask and dilute up to the mark with diluent. (40 ppm of Pibrentasvir, 100 ppm of Glecaprevir)

Sample Solution Preparation: Accurately weigh and transfer 242 mg of Glecaprevir and Pibrentasvir sample into a 100 mL clean, dry volumetric flask; add diluent and sonicate it up to 30 minutes to dissolve it completely and make volume up to the mark with the same solvent. (Stock solution)

Further, pipette 5 ml of the above solution into a 50 ml volumetric flask and make to the mark with diluents. (100 ppm of Glecaprevir and 40 ppm of Pibrentasvir)

Final optimised chromatographic conditions in RP-HPLC using AQbD

The separation and determination of two drugs have been achieved with the help of rotatable central composite-based AQbD ⁴ using the Kinetex RP-18 Column (100x4.6 mm, 2.6 μ) column. The mobile phase comprises HPLC grade acetonitrile: 0.1% TFA in a ratio of (26.464:73.536) v/v. The optimised chromatographic conditions were validated according to the ICH Q2R1 guidelines for specificity, linearity, accuracy, precision, LOD and LOQ and ICH Q2B for degradation studies ^{3.5}.

Chromatographic condition

Use suitable High-Performance Liquid Chromatographic equipped with a PDA detector. Column: Kinetex RP-18 Column (100x4.6mm, 2.6µ) Mobile phase ratio: Acetonitrile: 0.1%TFA (26.464:73.536) Detection wavelength: 236 nm Flow rate: 1 ml/min Injection volume: 20 µl Run time: 6 minutes

Preparation of Diluent: Methanol as diluent.

METHOD VALIDATION

Specificity

The specificity of an analytical method is the ability to measure specifically the analyte of interest without interference from blank and known impurities. For this purpose, blank chromatogram, standard chromatogram and sample chromatogram were recorded. The chromatogram of blank shows no response at the retention times of drugs, which confirms the response of drugs was specific.

The formula for Assay:

$$\% Assay = \frac{AT}{AS} * \frac{WS}{DS} * \frac{DT}{WT} * \frac{Average weight}{Label Claim} * \frac{P}{100} * 100$$

Linearity

Preparation of stock solution:

Accurately weigh and transfer 40 mg of Pibrentasvir and 100 mg of Glecaprevir working standard into a 100 ml clean, dry volumetric flask; add diluent and sonicate to dissolve it completely and make volume up to the mark with the same solvent.

Preparation of Level – I (25 ppm of Glecaprevir, 10 ppm of Pibrentasvir):

1.25 ml of the above stock solutions have been taken in different 50 ml of volumetric flasks and diluted up to the mark with diluent.

Preparation of Level – II (50 ppm of Glecaprevir, 20 ppm of Pibrentasvir):

2.5 ml of the above stock solutions were taken in different 50 ml of volumetric flasks, diluted up to the mark with diluent.

Preparation of Level – III (75 ppm of Glecaprevir, 30 ppm of Pibrentasvir):

3.75 ml of the above stock solutions have been taken in different 50 ml of volumetric flasks, diluted up to the mark with diluent

Preparation of Level – IV (100 ppm of Glecaprevir, 40 ppm of Pibrentasvir)

5 ml of the above stock solutions have been taken in different 50 ml of volumetric flasks, diluted up to the mark with diluent.

Preparation of Level – V (125 ppm of Glecaprevir, 50 ppm of Pibrentasvir)

6.25 ml of the above stock solutions were taken in different 50 ml of volumetric flasks, diluted up to the mark with diluent.

Preparation of Level – VI (150 ppm of Glecaprevir, 60 ppm of Pibrentasvir)

7.5 ml of the above stock solutions have been taken in different 50 ml of volumetric flasks, diluted up to the mark with diluent.

Procedure

Inject each level into the chromatographic system and measure the peak area.

Plot a graph of peak area versus concentration (on the X-axis concentration and the Y-axis Peak area) and calculate the correlation coefficient.

Accuracy

For the preparation of 50% solution (Concerning target Assay concentration), accurately weigh and transfer 121 mg of Glecaprevir and Pibrentasvir sample into a 100 mL clean, dry volumetric flask; add diluent and sonicate it for up to 30 minutes to dissolve it completely and make volume up to the mark with the same solvent. (Stock solution)

Further, pipette 5 ml of the above solution into a 50 ml volumetric flask and make to the mark with diluents. (50 ppm of Glecaprevir and 20 ppm of Pibrentasvir)

For the preparation of 100% solution (Concerning target Assay concentration)

Accurately weigh and transfer 242 mg of Glecaprevir and Pibrentasvir sample into a 100 mL clean, dry volumetric flask; add diluent and sonicate it for up to 30 minutes to dissolve it completely and make volume up to the mark with the same solvent. (Stock solution)

Further, pipette 5 ml of the above solution into a 50 ml volumetric flask and make up the mark with diluents. (100 ppm of Glecaprevir and 40 ppm of Pibrentasvir)

For the preparation of 150% solution (Concerning target Assay concentration):

Accurately weigh and transfer 363 mg of Glecaprevir and Pibrentasvir sample into a 100 mL clean, dry volumetric flask; add diluent and sonicate it for up to 30 minutes to dissolve it completely and make volume up to the mark with the same solvent. (Stock solution)

Further, pipette 5 ml of the above solution into a 50 ml volumetric flask and make to the mark with diluents. (150 ppm of Glecaprevir and 60 ppm of Pibrentasvir)

Procedure: Inject the standard solution, Accuracy -50%, Accuracy - 100% and Accuracy -150% solutions.

Acceptance Criteria: The % Recovery for each level should be between 98.0 to 102.0%.

Precision

Precision is the degree of repeatability of an analytical method under normal operation conditions. Precision is of 3 types

- 1. System precision
- 2. Method precision

3. Intermediate precision (a. Intra-day precision, b. Inter day precision)

System precision is checked using standard chemical substances to ensure the analytical system works appropriately. In this peak area, the % of drug of six determinations is measured, and % RSD should be calculated.

In method precision, a homogenous sample of a single batch should be analysed six times. This indicates whether a method is giving constant results for a single batch. In this, analyse the sample six times and calculate the % RSD.

The instrument's precision was checked by repeatedly injecting (n=6) solutions of 100 ppm of Glecaprevir and 40 ppm of Pibrentasvir).

Acceptance Criteria: The % RSD for the six replicate injection results absorbance should not exceed 2%.

Limit of detection (LOD) and limit of quantification (LOQ)

The limit of detection (LOD) and limit of quantification (LOQ) of the drug was calculated using the following equation as per International Conference Harmonization (ICH) guidelines.

$$LOD = 3.3 X \sigma /S$$
$$LOQ = 10 X \sigma /S$$

LOD for Glecaprevir was found to be $0.3 \ \mu\text{g/mL}$ and LOQ for Glecaprevir was found to be $1 \ \mu\text{g/ml}$, LOD for Pibrentasvir was found to be $0.12 \ \mu\text{g/ml}$ and LOQ for Pibrentasvir was found to be $0.40 \ \mu\text{g/ml}$.

Robustness

As part of the Robustness, deliberate change in the Flow rate, Mobile Phase composition, and Temperature Variation was made to evaluate the impact on the method.

A. The flow rate was varied from 0.9 ml/min to 1.1 ml/min. Standard solutions of 100 ppm of Glecaprevir and 40 ppm of Pibrentasvir were prepared and analysed using the varied and method flow rates.

On evaluation of the above results, it can be concluded that the variation in flow rate affected the method significantly. Hence, it indicates that the method is robust even with changes in the flow rate $\pm 10\%$.

B. The variation of organic phase ratio from (23.814:76.186) to (29.1114:70.886).

A standard solution of 100 ppm of Glecaprevir and 40 ppm of Pibrentasvir was prepared and analysed using the varied mobile phase ratio.

System suitability

The tailing factor for the peaks due to Glecaprevir and Pibrentasvir in standard solution should not be more than 2.0. The theoretical plates for the Glecaprevir and Pibrentasvir peaks

in standard solution should not exceed 2000.

Resolution for the Glecaprevir and Pibrentasvir peaks in standard solution should not be less than 2.67

Degradation Studies:

Stock solution preparation: Accurately weigh and transfer 242 mg of Glecaprevir and Pibrentasvir sample into a 100 mL clean, dry volumetric flask; add diluent and sonicate it for up to 30 minutes to dissolve it completely and make volume up to the mark with the same solvent.

Acid degradation: Pipette 5 ml of the above solution into a 50 ml vacuum flask, followed by 1 ml of 1N HCl and leave it for 15 min. After 15 minutes, neutralised with 1 N NaOH and diluted to 50 ml with diluent. Filter the solution using 0.45-micron syringe filters and transfer it to the vial.

Alkali degradation: Pipette 5 ml of the above solution into a 50 ml vacuum flask, followed by 1 ml of 1N NaOH and leave it for 15 minutes. After 15 minutes, neutralised with 1 N HCl and diluted to 50 ml with diluent. Filter the solution using 0.45-micron syringe filters and transfer it to the vial.

Thermal degradation: Glecaprevir and Pibrentasvir sample was taken in a Petri dish and kept in a Hot air oven at 105 ^oC for 3 hours. Then, the sample was taken and diluted with diluents injected into HPLC and analysed.

Reduction degradation: Pipette 5 ml of the above solution into a 50 ml vacuum flask; 1 ml of 10-cent Sodium bisulphate was added to the flask and left for 15 minutes. After 15 minutes, make the flask up to the mark, filter the solution using 0.45-micron syringe filters and transfer it to vials.

Peroxide degradation: Pipette 5 ml of the above solution into a 50 ml vacuum flask; 1 ml of 3 per cent w/v hydrogen peroxide was added to the flask and left for 15 minutes. After 15 minutes, make the flask up to the mark, filter the solution using 0.45-micron syringe filters and transfer it to vials.

Photolytic degradation: Glecaprevir and Pibrentasvir sample was placed in a photostability chamber for 3 hours. Then, the sample was taken and diluted with diluents injected into HPLC and analysed.

281 6 210 9 210 9 2000 240.00 280.00 320.00 340.00 380.00 Glecapevir Pitrentasvir

Figure 1: PDA - Spectrum of Glecaprevir and Pibrentasvir

Figure 3: Response surface for retention time as a function of mobile phase and flow rate

Figure 5: Response surface for plate count as a function of mobile phase and flow rate

Figure 7: Response surface for tailing as a function of mobile phase and flow rate

Hydrolysis degradation: Pipette 5 ml of the above solution into a 50 ml vacuum flask, 3 ml of HPLC water added to the flask, and leave it for 15 minutes. After 15 minutes, make the flask up to the mark, filter the solution using 0.45-micron syringe filters and transfer it to vials.^{8,9}

Figure 2: Contour plots for retention time as a function of mobile phase and flow rate

Figure 4: Contour plots for plate count as a function of mobile phase and flow rate

Figure 6: Contour plots for tailing as a function of mobile phase and flow rate

Figure 8: Optimised chromatogram

Table 1: Optimised chromatographic conditions

Parameters	Observation
Instrument used	Waters HPLC with an autosampler and PDA detector.
Injection volume	20 µl
Mobile Phase	Acetonitrile: 0.1% TFA (26.464:73.536)
Column	Kinetex RP-18 Column (100x4.6 mm, 2.6 µ)
Detection Wavelength	236 nm
Flow Rate	1 mL/min
Runtime	6 minutes
Mode of separation	Isocratic mode

Table 2: Central composite design for screening of method parameters

Std	Run	Factor 1	Factor 2	Response 1	Response 2	Response 3
		A: Acetonitrile %	B: Flow rate ml/min	Retention Time min	USP Plate Count U	USP Tailing U
8	1	30	1.2	2.015	16628	0.76
4	2	33.5355	1.14142	1.624	18076	0.70
13	3	30	1	2.217	17152	0.83
7	4	30	0.8	2.504	14265	0.88
6	5	35	1	1.728	18541	0.74
12	6	30	1	2.217	16852	0.82
5	7	25	1	2.736	9947	0.96
11	8	30	1	2.216	16872	0.79
1	9	26.4645	0.858579	2.684	10516	0.95
9	10	30	1	2.216	16872	0.82
3	11	26.4645	1.14142	2.513	12505	0.90
2	12	33.5355	0.858579	2.156	17459	0.81
10	13	30	1	2.220	16852	0.82

Table 3: Solutions found

Solutions found			Glecaprevir a				
Number	Acetonitrile	Flow rate	Retention Time	Desirability			
1	26.464	1.000	2.579	12446.923	0.916	0.927	Selected

Table 4: ANOVA for Quadratic model Response 1: Retention Time

Source	Sum of Squares	df	Mean Square	F-value	p-value			
Model	1.29	5	0.2578	42757.28	< 0.0001	significant		
A-Acetonitrile	1.01	1	1.01	1.676E+05	< 0.0001			
B-Flow rate	0.2428	1	0.2428	40273.06	< 0.0001			
AB	0.0327	1	0.0327	5426.81	< 0.0001			
A ²	0.0004	1	0.0004	58.21	0.0001			
B ²	0.0031	1	0.0031	507.17	< 0.0001			
Residual	0.0000	7	6.029E-06					
Lack of Fit	0.0000	3	9.887E-06	3.15	0.1482	not significant		
Pure Error	0.0000	4	3.136E-06					
Cor Total	1.29	12						
Summary of the quadratic model								
Std. Dev.	0.0025		R ²	1.0000	Predicted R ²	0.9998		
Mean	2.23		Adjusted R ²	0.9999	Adequate Precision	664.6349		

Table 5: ANOVA for Quadratic model Response 2: USP Plate Count

Source	Sum of Squares	df	Mean Square	F-value	p-value			
Model	9.700E+07	5	1.940E+07	573.20	< 0.0001	significant		
A-Acetonitrile	7.606E+07	1	7.606E+07	2247.51	< 0.0001			
B-Flow rate	4.422E+06	1	4.422E+06	130.66	< 0.0001			
AB	4.704E+05	1	4.704E+05	13.90	0.0074			
A ²	1.343E+07	1	1.343E+07	396.88	< 0.0001			
B ²	4.323E+06	1	4.323E+06	127.74	< 0.0001			
Residual	2.369E+05	7	33844.06					
Lack of Fit	1.692E+05	3	56409.48	3.33	0.1376	not significant		
Pure Error	67680.00	4	16920.00					
Cor Total	9.723E+07	12						
Summary of the quadratic model								
Std. Dev.	183.9675		R ²	0.9976	Predicted R ²	0.9865		
Mean	15579.7532		Adjusted R ²	0.9958	Adequate Precision	69.7825		

Source	Sum of Squares	df	Mean Square	F-value	p-value			
Model	0.0696	5	0.0139	101.30	< 0.0001	significant		
A-Acetonitrile	0.0535	1	0.0535	389.35	< 0.0001			
B-Flow rate	0.0127	1	0.0127	92.27	< 0.0001			
AB	0.0009	1	0.0009	6.35	0.0398			
A ²	0.0025	1	0.0025	18.43	0.0036			
B ²	0.0001	1	0.0001	0.7584	0.4127			
Residual	0.0010	7	0.0001					
Lack of Fit	0.0001	3	0.0000	0.1267	0.9394	not significant		
Pure Error	0.0009	4	0.0002					
Cor Total	0.0706	12						
Summary of the quadratic model								
Std. Dev.	0.0117		R ²	0.9864	Predicted R ²	0.9721		
Mean	0.8290		Adjusted R ²	0.9766	Adequate Precision	33.5546		

Table 6: ANOVA for Quadratic Model Response 3: USP Tailing

Table 7: Assay of Glecaprevir and Pibrentasvir

Brand	Drug	Avg sample area (n=2)	Std. Conc. (µg/ml)	Sample Conc. (µg/ml)	Label amount (mg)	Std purity	Amount found (µg/ml)	% assay
-	Glecaprevir	3848467	100	100	100	99.8	100.28	100.3
	Pibrentasvir	1189830	40	40	40	99.7	39.85	99.6

Figure 9: Chromatogram of Assay-1

Figure 10: Chromatogram of Assay-2

Table 8: Results of linearity for Glecaprevir and Pibrentasvir

S.NO	Glecapr	evir	Pibrent	asvir	
	Conc.(µg/ml)	Peak area	Conc.(µg/ml)	Peak area	
1	25.00	969383	10.00	282624	
2	50.00	1958638	20.00	597832	
3	75.00	2924572	30.00	922173	
4	100.00	3841582	40.00	1194620	
5	125.00	4750920	50.00	1467913	
6	150.00	5649679	60.00	1777425	
Regression equation	y = 37707.22x	+42640.39	y =29641.58x	+ 2550.89	
Slope	37707.	22	29641	.58	
Intercept	42640.	39	2550.	89	
\mathbf{R}^2	0.9998	32	0.999	69	

Figure 11: Calibration curve for Pibrentasvir

Figure 12: Calibration curve for Glecaprevir

Nithiyananthan K & Prasada Rao KVS / Int. J. Res. Ayurveda Pharm. 14 (5), 2023

% Concentration (at specification Level)	Area	Amount Added (mg)	Amount Found (mg)	% Recovery	Mean Recovery	%RSD
50%	1922882	50	50.1	100.2	100.4	0.71
	1940987	50	50.57	101.1		
	1913964	50	49.87	99.7		
100%	3853619	100	100.41	100.4	100.1	0.32
	3829776	100	99.79	99.8		
	3836913	100	99.97	100.0		
150%	5709614	150	148.77	99.2	99.7	0.57
	5773265	150	150.43	100.3		
	5727741	150	149.24	99.5		

Table 9: Accuracy results of Glecaprevir by RP-HPLC method

Table 10: The Accuracy results for Pibrentasvir by RP-HPLC method

% Concentration	Area	Amount	Amount Found	% Recovery	Mean Recovery	%RSD
(at specification Level)		Added (mg)	(mg)			
50%	599127	20	20.07	100.4	99.7	0.54
	593281	20	19.87	99.4		
	594108	20	19.90	99.5		
100%	1189264	40	39.83	99.6	99.8	0.25
	1192791	40	39.95	99.9		
	1195326	40	40.03	100.1		
150%	1788465	60	59.9	99.8	99.7	0.43
	1790870	60	59.98	100.0]	
	1776553	60	59.50	99.2		

Table 11: Method Precision for Glecaprevir and Pibrentasvir by RP-HPLC method

S. No.	Area for Glecaprevir	Area for Pibrentasvir
1	3825123	1198276
2	3861249	1185840
3	3835631	1196354
4	3848103	1192136
5	3872867	1178209
6	3854147	1189823
Average	3849520	1190106
Standard Deviation	17286.913	7344.723
%RSD 0.45		0.62

Table 12: Intermediate Precision (Day variation) for Glecaprevir and Pibrentasvir by RP-HPLC method

S. No.	Area for Glecaprevir	Area for Pibrentasvir
1	3846721	1188072
2	3803216	1193217
3	3846241	1190328
4	3867548	1186219
5	3858452	1194382
6	3850543	1199201
Average	3845454	1191903
Standard Deviation	22222.799	4703.145
%RSD	0.58	0.39

Table 13: System precision table of Glecaprevir and Pibrentasvir

S. No	Concentration Glecaprevir (µg/ml)	Area of Glecaprevir	Concentration of Pibrentasvir (µg/ml)	Area of Pibrentasvir	
1.	100	3842651	40	1197235	
2.	100	3826772	40	1191208	
3.	100	3838974	40	1188335	
4.	100	3844609	40	1199276	
5.	100	3827564	40	1194523	
6.	100	3846812	40	1195281	
Mean	383789	7	1194310		
S.D	8704.3	1	3988.18		
%RSD	0.23		0.33		

Table 14: Sensitivity parameters (LOD and LOQ) by RP-HPLC

Name of drug	LOD(µg/ml)	s/n	LOQ(µg/ml)	s/n
Glecaprevir	0.30	3	1.00	10
Pibrentasvir	0.12	3	0.40	10

Table 15: Robustness results of Glecaprevir by RP-HPLC

Parameter	Glecaprevir							
	Condition	Retention time (minutes)	Peak area	Tailing	Plate count	% RSD		
Flow rate	Less flow (0.9 ml)	2.713	3561578	0.95	12535	0.36		
Change	Actual (1.0 ml)	2.576	3842651	0.90	12452	0.23		
(mL/min)	More flow (1.1 ml)	2.438	3951487	0.85	12411	0.50		
Organic Phase change	Less Org (23.814:76.186)	2.872	3653640	0.98	12597	0.41		
_	Actual (26.464:73.536)	2.577	3826772	0.91	12447	0.23		
	More Org (29.1114:70.886)	2.285	4054324	0.87	12364	0.36		

Table 16: Robustness results of Pibrentasvir by RP-HPLC

Parameter	Pibrentasvir								
	Condition	Retention time(minutes)	Peak area	Resolution	Tailing	Plate count	% RSD		
Flow rate	Less flow (0.9 ml)	4.098	1021754	5.15	0.92	19876	0.41		
Change	Actual (1.0 ml)	3.924	1197235	4.87	0.85	19819	0.33		
(mL/min)	More flow (1.1 ml)	3.756	1328923	4.39	0.81	19773	0.85		
Organic Phase change	Less Org (23.814:76.186)	4.222	998274	4.93	0.95	19941	0.10		
	Actual (26.464:73.536)	3.921	1191208	4.84	0.87	19812	0.33		
	More Org (29.1114:70.886)	3.843	1489263	5.96	0.84	19682	0.47		

Table 17: System suitability parameters for Glecaprevir and Pibrentasvir

Parameter	Glecaprevir	Pibrentasvir
Retention time	2.576	3.924
Plate count	12452	19819
Tailing factor	0.90	0.87
Resolution		4.87
% RSD	0.23	0.33

Figure 13: Chromatogram of standard

Table 18: Forced Degradation	ı results for C	Flecaprevir and	l Pibrentasviı
------------------------------	-----------------	------------------------	----------------

Results: %			Pibrentasvir							
Degradation	Area	%	% Deg	Purity	Purity	Area	%	%	Purity	Purity
results		Assay		Angle	Threshold		Assay	Deg	Angle	Threshold
Control	3835475	100	0	2.134	10.828	1194478	100	0	0.987	8.723
Acid	3358219	87.5	12.5	2.124	10.854	1065931	89.3	10.7	0.925	8.751
Alkali	3402440	88.7	11.3	2.131	10.831	1056178	88.4	11.6	0.947	8.709
Peroxide	3268711	85.2	14.8	2.108	10.827	1026525	86.0	14.0	0.939	8.798
Reduction	3732232	97.3	2.7	2.141	10.852	1152477	96.5	3.5	0.909	8.716
Thermal	3754823	97.9	2.1	2.152	10.809	1164373	97.5	2.5	0.918	8.793
Photolytic	3793047	98.9	1.1	2.175	10.834	1174017	98.3	1.7	0.944	8.758
Hydrolysis	3439588	89.7	10.3	2.119	10.808	1081754	90.6	9.4	0.952	8.711

RESULTS

Determination of Working Wavelength (λ_{max}): Figure 1

Selection of chromatographic conditions: Acetonitrile and 0.1% TFA (26.464:73.536) were used as the mobile phase for chromatographic separation, with a 1 mL/min flow rate. The

column was kept at a temperature of 30 $^\circ$ C, and detection was done at a wavelength of 236 nm (Table 1).

The **Model F-value** of 42757.28 implies the model is significant. There is only a 0.01% chance that an F-value this large could occur due to noise. **P-values** less than 0.0500 indicate model terms are significant. In this case, A, B, AB, A², and B² are significant model terms. Values greater than 0.1000 indicate the model terms are not significant. If there are many insignificant model terms (not counting those required to support hierarchy), model reduction may improve your model. The **Lack of Fit F-value** of 3.15 implies the Lack of Fit is not significant relative to the pure error. There is a 14.82% chance that a Lack of Fit F-value this large could occur due to noise. A non-significant lack of fit is good -- we want the model to fit. The Predicted R² of 0.9998 is in reasonable agreement with the Adjusted R² of 0.9999; i.e. the difference is less than 0.2. Adequate Precision measures the signal-to-noise ratio. A ratio greater than 4 is desirable. Your ratio of 664.635 indicates an adequate signal. This model can be used to navigate the design space (Table 4).

3D and Contour graph for the retention time: The relationship between the flow rate and percentage of the mobile phase was examined using contour and three-dimensional graphs at a constant temperature of 30 °C. According to the graph, better retention time can be obtained at lower flow rates and lower levels of the mobile phase (Figures 2 and 3).

The Model F-value of 573.20 implies the model is significant. There is only a 0.01% chance that an F-value this large could occur due to noise. P-values less than 0.0500 indicate model terms are significant. In this case, A, B, AB, A², and B² are significant model terms. Values greater than 0.1000 indicate the model terms are not significant. If there are many insignificant model terms (not counting those required to support hierarchy), model reduction may improve your model. The Lack of Fit Fvalue of 3.33 implies the Lack of Fit is not significant relative to the pure error. There is a 13.76% chance that a Lack of Fit F-value this large could occur due to noise. A non-significant lack of fit is good -- we want the model to fit. The Predicted R² of 0.9865 is in reasonable agreement with the Adjusted R² of 0.9958; i.e. the difference is less than 0.2. Adequate Precision measures the signal-to-noise ratio. A ratio greater than 4 is desirable. Your ratio of 69.783 indicates an adequate signal. This model can be used to navigate the design space (Table 5).

3D and Contour graph for the plate count: The relationship between the flow rate and percentage of the mobile phase was examined using contour and three-dimensional graphs at a constant temperature of 30 °C. From the graph, a lower flow rate and lower level of the mobile phase can give a higher number of theoretical plates (Figure 4 and 5).

The Model F-value of 101.30 implies the model is significant. There is only a 0.01% chance that an F-value this large could occur due to noise. P-values less than 0.0500 indicate model terms are significant. A, B, AB, and A² are significant model terms in this case. Values greater than 0.1000 indicate the model terms are not significant. If there are many insignificant model terms (not counting those required to support hierarchy), model reduction may improve your model. The Lack of Fit F-value of 0.13 implies the Lack of Fit is not significant relative to the pure error. There is a 93.94% chance that a Lack of Fit F-value this large could occur due to noise. A non-significant lack of fit is good -- we want the model to fit. The Predicted R² of 0.9721 is in reasonable agreement with the Adjusted R² of 0.9766; i.e. the difference is less than 0.2. Adequate Precision measures the signal-to-noise ratio. A ratio greater than 4 is desirable. Your ratio of 33.555 indicates an adequate signal. This model can be used to navigate the design space (Table 6).

3D and Contour graph for the tailing: The relationship between the flow rate and percentage of the mobile phase was examined using contour and three-dimensional graphs at a constant temperature of 30 °C. From the graph, a lower flow rate and lower level of the mobile phase can give a lesser tailing (Figure 6 and 7).

Analytical method validation (HPLC): The method was validated for its linearity, accuracy, precision, and specificity. Method validation was carried out as per ICH guidelines.

Specificity: Retention times of Glecaprevir and Pibrentasvir were 2.576 minutes and 3.924 minutes, respectively. We did not find interfering peaks in blank and placebo at retention times of these drugs in this method. So, this method was said to be specific. (Figure 8)

Assay: (Table 7, Figure 9 and 10)

Linearity: (Table 8, Figures 11 and 12)

Accuracy: (Tables 9 and 10)

Three levels of Accuracy samples were prepared by the standard addition method. Triplicate injections were given for each level of accuracy, and mean % Recovery was obtained as 100.1% and 99.7% for

Precision

Repeatability

Acceptance Criteria: The % RSD for the area of six standard injection results should not be more than 2%. (Table 11)

Intermediate precision (Day_ Day Precision): (Table 12)

Acceptance Criteria: The % RSD for the area of six standard injection results should not be more than 2%.

System Precision: Six injections were given from a single volumetric flask of working standard solution, and the obtained areas were mentioned above. Average area, standard deviation and % RSD were calculated for two drugs. % RSD obtained as 0.23% and 0.33%, respectively, for Glecaprevir and Pibrentasvir. As the limit of Precision was less than "2", the system precision was passed in this method. (Table 13)

Limit of detection (LOD) and limit of quantification (μ g/ml) (Table 14)

Robustness: (Tables 15 and 16)

System suitability: All the system suitability parameters were within the range and satisfactory as per ICH guidelines. (Table 17, Figure 13)

Acceptance Criteria: According to ICH guidelines, the plate count should be more than 2000, the tailing factor should be less than 2, and the resolution must be more than 2. All the system-suitable parameters were passed and were within the limits.

Degradation studies: Forced degradation studies of Glecaprevir and Pibrentasvir in various conditions such as acidic, basic, peroxide, reduction, thermal, photolytic, and hydrolytic were observed. The Glecaprevir and Pibrentasvir were stable under reduction, thermal, photolytic and hydrolytic conditions. The drug showed significant degradation in the acidic (12.5 and 10.7%), alkali (11.3 and 11.6%) and peroxide (14.8 and 14.0%) conditions for Glecaprevir and Pibrentasvir, respectively (Table 18).

DISCUSSION

The mobile phase used was chromatographic separation using acetonitrile and 0.1% TFA (26.464:73.536) at a flow rate of 1 mL/min and a pH of 2.25. At 236 nm, detection was conducted while the column temperature was kept at ambient. Glecaprevir and Pibrentasvir had respective retention times of 2.462 and 3.771 minutes.

The design expert programme used the numerical optimisation method to assess the model's accuracy. The design expert recommended chromatographic settings of pH 2.25, ambient temperature, and mobile phase ratio of 26.464:73.536 with desirability of 0.927.

Under these circumstances, the model projected that the Glecaprevir retention time would be 2.462 minutes, whereas the Pibrentasvir retention time would be 3.771 minutes. The plate counts were 10541 and 19845, the tailing was 0.95 and 0.86, and the resolution was 4.14. The HPLC system was operated and maintained under the same experimental conditions.

The AQbD ANOVA results showed that all responses fell within the 95% confidence interval statistical limit, indicating a high degree of agreement between the observed and projected data. The optimised method was validated using ICH guidelines. The results showed that the method developed is linear, accurate, precise, robust, repeatable, and reproducible. Forced degradation studies of Glecaprevir and Pibrentasvir in various conditions such as acidic, basic, peroxide, reduction, thermal, photolytic, and hydrolytic were observed. The Glecaprevir and Pibrentasvir were stable under reduction, thermal, photolytic and hydrolytic conditions. The drug showed significant degradation in the acidic (12.5 and 10.7%), alkali (11.3 and 11.6%) and peroxide (14.8 and 14.0%) conditions for Glecaprevir and Pibrentasvir, respectively. The assay results also confirmed the percentage purity of 100.3% and 99.6 % for Glecaprevir and Pibrentasvir, respectively. Therefore, it is clear that more than any other stress state, the acid, alkali, and peroxide conditions significantly affect the stability of Glecaprevir and Pibrentasvir.

CONCLUSION

Using RP-HPLC and design expert software, AQbD created a straightforward, accurate, and reliable analytical approach for simultaneous quantifying Glecaprevir and Pibrestasvir. Thirteen trials based on a central composite design were conducted. The responses from the trails were once more fed into Design Expert, where analytical parameters such as tailing, theoretical plates, and resolution were examined. The optimal approach was chosen based on the results of AQbD and verified in accordance with ICH guidelines. Additional tests on forced degradation were conducted, confirming the stability. The discovered method can be used for bulk and formulation estimation in the pharmaceutical industry.

ACKNOWLEDGEMENT

We thank Shree ICON Pharmaceutical Laboratories, Vijayawada, for providing analytical support.

REFERENCES

- Wei L, Wang G, Alami NN, Xie W, Heo J, Xie Q, et al. Glecaprevir–Pibrentasvir to treat chronic hepatitis C virus infection in Asia: two multicentre, phase 3 studies— a randomised, double-blind study (VOYAGE-1) and an openlabel, single-arm study (VOYAGE-2). Lancet Gastroenterol Hepatol [Internet]. 2020 Sep 1 [cited 2023 Sep 21];5(9):839– 49. Available from: http://www.thelancet.com/article/ S2468125320300868/fulltext
- 2. Glecaprevir-Pibrentasvir Mavyret Treatment Hepatitis C Online [Internet]. [cited 2023 Sep 21]. Available from: https://www.hepatitisc.uw.edu/page/treatment/drugs/glecapr evir-pibrentasvir
- 3. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use ICH Harmonised Tripartite Guideline Validation of Analytical Procedures: Text and Methodology Q8(R2).
- Bhattacharya S, Bhattacharya S. Central Composite Design for Response Surface Methodology and Its Application in Pharmacy. Response Surface Methodology in Engineering Science [Internet]. 2021 Jan 28 [cited 2023 Aug 17]; Available from: https://www.intechopen.com/chapters/ 74955
- Park G, Kim MK, Go SH, Choi M, Jang YP. Analytical Quality by Design (AQbD) Approach to the Development of Analytical Procedures for Medicinal Plants. Plants [Internet]. 2022 Nov 1 [cited 2023 Sep 21];11(21):2960. Available from: https://www.mdpi.com/2223-7747/11/21/2960/htm
- Rao TN, Rao TN. Validation of Analytical Methods. Calibration and Validation of Analytical Methods - A Sampling of Current Approaches [Internet]. 2018 Apr 25 [cited 2023 Sep 21]; Available from: https://www. intechopen.com/chapters/57909
- 7. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use ICH Harmonised Tripartite Guideline Validation of Analytical Procedures: Text and Methodology Q2(R1).
- Kumar P, Mangla B, Beg S, Afzal O, Saleh Alfawaz Altamimi A, Almalki WH, *et al.* Optimisation and validation of stability indicating RP-HPLC method for the quantification of gefitinib in bulk drug and nanoformulations: An application towards in vitro and ex vivo performance evaluation. Arabian Journal of Chemistry. 2022 Dec 1;15(12):104333.
- Blessy M, Patel RD, Prajapati PN, Agrawal YK. Development of forced degradation and stability indicating studies of drugs-A review. J Pharm Anal [Internet]. 2014 [cited 2023 Sep 21];4(3):159. Available from: /pmc/articles/PMC5761119/

Cite this article as:

Nithiyananthan K and Prasada Rao KVS. Validation of stability indicating RP-HPLC method for simultaneous estimation of Glecaprevir and Pibrentasvir by using analytical quality by design (AQBD) method. Int. J. Res. Ayurveda Pharm. 2023;14(5):27-36 DOI: <u>http://dx.doi.org/10.7897/2277-4343.1405140</u>

Source of support: Nil, Conflict of interest: None Declared

Disclaimer: IJRAP is solely owned by Moksha Publishing House - A non-profit publishing house, dedicated to publishing quality research, while every effort has been taken to verify the accuracy of the content published in our Journal. IJRAP cannot accept any responsibility or liability for the site content and articles published. The views expressed in articles by our contributing authors are not necessarily those of IJRAP editor or editorial board members.