Research Article

Available online through

www.ijrap.net

MANAGEMENT OF NEWLY DIAGNOSED TYPE 2 DIABETES BY TRIGONELLA FOENUM-GRAECUM

Bhaktha Geetha¹*, Nayak Shivananda², Shantaram Manjula¹
Department of Biochemistry, Yenepoya Medical College, Yenepoya University, Mangalore 575 018, Karnataka, India

²Department of Preclinical Science, University of West Indies, Trinidad and Tobago, West Indies

Received on: 12/06/2011 Revised on: 20/07/2011 Accepted on: 12/08/2011

ABSTRACT

The objective of our study was to determine the role of fenugreek seed powder in the management of newly diagnosed type 2 diabetes. We selected 38 patients with newly diagnosed type 2 diabetes, aged between 30-45 years, without any significant diabetes complications and were grouped as: Group I (n=19) consumed 25 g. fenugreek twice daily (before breakfast and dinner) and on moderate exercise for two months, Group II (n=19) subjects were on dietary control. Blood sample collected before and after the treatment were analyzed for lipid profile and fasting blood sugar (FBS). Atherogenic index of plasma (AIP) was computed for each patient at baseline. The subjects received fenugreek seed powder and on exercise showed significant reduction in the FBS, cholesterol, triglyceride and LDL cholesterol which were statistically significant. There was a significant increase in the HDL cholesterol. The AIP value was statistically significant with subjects who received fenugreek seed powder and on exercise. FBS and triglyceride were reduced with the subjects who were on diet control. Our data showed that the management of type 2 diabetes would be easier with therapeutic approach of fenugreek seeds.

KEYWORDS: Type 2 diabetes, fenugreek, AIP, anti-hyperglycemic effect

*Author for correspondence

Ms. Geetha Bhaktha, PhD Student, Department of Biochemistry, Yenepoya Medical College, Yenepoya University, Mangalore 575 018 Karnataka, India Email: bhakthageetha@rediffmail.com

INTRODUCTION

Type 2 diabetes is one of the most prevalent and fastest growing diseases in India. Diabetes not only affects prosperous nations, but often reaches its highest frequency in poor and disadvantaged communities that can least afford the heavy burden of treatment and longterm complications. Though adequate therapeutic services and modalities are widely available. complementary and alternative medicines (CAM) therapies are used often with or without consulting their physicians. In spite of the presence of known antidiabetic medicine in the pharmaceutical market, remedies from medicinal plants are used with success to treat this disease¹. It attributed has been antihyperglycemic effect of these plants is due to their ability to restore the function of pancreatic tissues by causing an increase in insulin output or inhibit the intestinal absorption of glucose or to the facilitation of metabolites in insulin dependent processes. Hence

treatment with herbal drugs has an effect on protecting βcells and smoothing out fluctuation in glucose level². One such CAM therapies commonly used in Dakshina Kannada district is Fenugreek seeds (Trigonella foenumgraecum). It is one of the oldest medicinal plants, dating back to Hippocrates and ancient Egyptian times³. Fenugreek contains saponins, glycosides and other chemical constituents⁴ which has beneficial effects in pancreatic and other tissues and improves glucose absorption, hyperlipidemic state as well as decrease insulin resistance 5-7. Insulin resistance is often associated with increased triglyceride (TG) and decreased HDLcholesterol (HDL-C) concentrations and increased small LDL particles. The Atherogenic Index of Plasma (AIP), defined as log(TG/HDL-C), has recently been proposed as a marker of plasma atherogenicity because it is increased in people at higher risk for coronary heart disease and is inversely correlated with LDL particle size. Thus this study was designed to compare the efficacy of fenugreek versus diet control in the treatment of newly diagnosed type 2 diabetes.

MATERIAL AND METHODS

The study participants were newly diagnosed type 2 diabetes patients who were aged between 30-45 years, without any significant diabetes complications. Thirty eight subjects were thus selected for the study. Written consent of the patients was obtained before the study.

Patients were divided into 2 groups:

I- Subjects consumed only fenugreek powder with moderate exercise.

II- Subjects on dietary control.

Fenugreek of good quality were used and was consumed twice daily in powdered form (before breakfast and dinner), of about 25g dose each time with water for two months. Measurements of lipid profile and FBS were done as per the standard methods. AIP was computed for each patient at baseline and at each subsequent visit according to the following equation:

$$AIP = log (TG/HDL-C)$$

Statistical analysis was carried out using Student's paired and unpaired't' tests. Paired't' test was used to determine the significance within the groups and unpaired't' test was used to determine the significance between the groups.

RESULTS

The results of the study are depicted in the tables. The effects of fenugreek on FBS, lipid profile along with AIP are presented in **table 1**. The group which consumed fenugreek seed powder with moderate exercise showed statistically significant lower mean value (p < 0.001).

Table 2 presents the effects of diet control alone on FBS, lipid profile along with AIP. Only FBS, TG and VLDL showed statistically significant lower mean value.

Comparison value between fenugreek and diet control group after 2 months is presented in **table 3**, which shows significantly lower mean values in lipid profile.

DISCUSSION

This study demonstrates that approximately 8 weeks of treatment with fenugreek seeds along with exercise improves insulinotropic activity significantly which is supported by previous study by Sauvaire y et.al⁷. This progressive improvement is reflected on the glycemic state, lipid profile and is similar with the result of Basch et al⁸.

In the current study, use of fenugreek seeds have shown to decrease FBS levels and this hypoglycemic effect of fenugreek seed is supported by studies in animals⁹⁻¹² and in humans¹³⁻¹⁶. The mechanism by which fenugreek seeds induce a hypoglycemic effect may be due to an amino acid: 4-hydroxy isoleucine found in it. This amino

acid has shown to have both insulinotropic and antidiabetic properties^{17, 18.} In fenugreek seeds the concentration is around 0.56% w/w. It was investigated by the same author that 4-hydroxyisoleucine pancreatic β cell stimulation, thus caused explanation. The hypoglycemic mechanisms fenugreek seed include delay of gastric emptying, slowing carbohydrate absorption and inhibition of glucose transport from the fiber content, as well as increased erythrocyte insulin receptors and modulation of peripheral glucose utilization¹⁹⁻²

Our result shows that fenugreek seed has an influence on lipid metabolism and it showed a significant level of decrease in TG and increase in HDL which is supported by Gupta et al¹⁶.

Our study further supported a progressive decline in cholesterol level and a significant reduction in LDL fraction which implies the action of saponins¹⁵⁻²⁴ suggesting that the gum fraction or dietary fiber fraction (galactomannans) present in it. It was hypothesized that micelles formed from bile acids and saponins are not available for absorption due to their large size. A further insight in the lowering effect of cholesterol was given by Evans et al²⁴.

The galactomannan isolated from fenugreek exhibited a prominent selective inhibitory effect against intestinal lipase activity. It was found to significantly delay the absorption of LDL-cholesterol and triglycerides and helps to increase HDL-cholesterol. In addition, fenugreek galactomannan efficiently protects the hepatic function observed by the considerable decrease of aspartate and alanine transaminases (AST and ALT) and lactate dehydrogenase (LDH) contents in the serum of diabetic rats. The beneficial effects of fenugreek galactomannan were also evidenced by their capacity to inhibit diabetes-induced kidney injury through lowering the urea and creatinine content in plasma²⁴.

Several other beneficial properties of fenugreek have been reported; as an antioxidant^{25,26}, as an anticarcinogenic^{27,} as an anti-microbial^{28, 29,} as an anti-ulcer³⁰, as an anti-obesity³¹ and hypocholesterolemic³²⁻³⁴. The most looked for actions of the extracts of fenugreek include protection against hyperglycemia in patients with diabetes³⁵⁻³⁷.

AIP is an important tool for analyzing the results of clinical studies. AIP provides information about the atherogenicity of plasma and quantifies the response to therapeutic intervention.

The association of TGs and HDL-C in this simple ratio theoretically reflects the balance between risk and protective lipoprotein forces. Patients in this study

Bhaktha Geetha et al / IJRAP 2011, 2 (4) 1231-1234

population had high AIP values at baseline. Fenugreek treatment significantly decreased AIP from baseline in each of the study groups. Fenugreek treatment groups had a significantly lower AIP compared with their respective diet control group.

Therefore, these investigations about fenugreek seeds reveal it as a potent natural food source that has a capacity to prevent and improve the disease and also act as therapeutic agent. Hence these data indicate that the management of type 2 diabetes would be easier with therapeutic approach of fenugreek seeds.

ACKNOWLEDGEMENT

We would like to express our gratitude to Dr.G.S. Chandrashekar, Senior Physician & Cardio Diabetologist of Adarsha Hospital & Institute of Cardio diabetes, Trauma & Joint Replacement, Udupi, Karnataka for his support in conducting this study.

REFERENCES

- 1. Bhattaram VA, M Ceraefe, C Kohlest, M Vest and H Deundorf. Pharmacokinetics and bioavailabitlity of herbal medicinal products. Phytomed 2002; 9: 1-36.
- 2. Elder C. Ayurveda for diabetes mellitus: a review of the biomedical literature. Altern Ther Health Med 2004; 10: 44-50.
- 3. Tensen R. Fenugreek, overlooked but not forgotten. UCLA lactation Alumni Newsletter 1992; 1:2-3.
- 4. Jellin JM,Gregory PJ,et al.:Pharmacists letter/prescribers Letter Natural Medicines comprehensive Database. 11th edn. Stockton.calif.,therapeutic Research faculty,2009.
- Raghuram TC, Sharma R, Sivakumar D, Sahay BK. Effect of fenugreek seeds on intravenours glucose disposition in Noninsulin dependent diabetes patients. Phytotherapy Res 1994; 8:83-86.
- 6. Prasanna M. Hypolepidemic effect of fenugreek: a clinical study.Inidan J Pharma.2000; 32:34-6.
- 7. Sauvaire Y, Petit P, Broca C, Manteghetti M, Baissac Y, Fernandez- Alvarez J, Gross R, Roye M, Leconte A, Gomis R & Ribes G 4-Hydroxyisoleucine: a novel amino acid potentiator of insulin secretion. Diabetes 1998; 47(2), 206–210.
- 8. Basch E, Ulbricht C, Kuo G, Szapary P, Smith M. Therapeutic applications of fenugreek. Alternative Med Rev 2003; 8: E617-E623
- Ribes Y, Sauvaire C, Da Costa JC & Loubatieres-Mariani MM Antidiabetic effects of subtractions from fenugreek seeds in diabetic dogs. Proceedings of the Society of Experimental Biology and Medicine 1986; 182, 159–166
- 10. Srichamroen A, AB Thomson, CJ Field and TK Basu. In vitro intestinal glucose uptake is inhibited by galactomannan from Canadian fenugreek seed (Trigonella foenum graecum L) in genetically lean and obese rats. Nutr. Res 2009; 29: 49-54.
- 11. Shani J, Goldschimied A, Joseph B, AH Aronson, Z Sulman FG, Hypoglycemic effect of Trigonella foenum graecum and Lupinus termis (Leguminosae) and their major alkaloids in alloxan-induced diabetic and normal rats. Archives Internationals de pharmacodynamic et de Therapie. 1974; 210: 27-37.
- 12. Kumar GS, Shetty AK, Sambaiah K, Salimath PV. Antidiabetic property of fenugreek seed mucilage and spent turmeric in streptozotocin-iduced diabetic rats. Nutrition Research 2005; 25: 1021–1028.

- 13. Nazila Kassaian, Leila Azadbakht, Badrolmolook Forghani, Masud Amini. Effect of Fenugreek Seeds on Blood Glucose and Lipid Profiles in Type 2 Diabetic Patients. Int. J. Vitam. Nutr. Res 2009; 79 (1): 34 39.
- 14. Analava Mitra and Debaprasad Bhattacharya. Dose-dependent effects of Fenugreek composite in Diabetes with dislipidaemia. Internet Journal of Food Safety 2006; 8:49-55.
- 15. Sharma RD and Raghuram TC. Hypoglycaemic effect of fenugreek seeds in non-insulin dependent diabetic subjects. Nutrition Research 1990; 10, 731–739.
- 16. Gupta A, Gupta R, Lal B. Effect of *Trigonella foenum-graecum* (fenugreek) seeds on glycaemic control and insulin resistance in type 2 diabetes mellitus: a double blind placebo controlled study. J Assoc Physicians India 2001; 49:1057-1061.
- 17. Broca C, Manteghetti M, Gross R, Baissac Y, Jacob M, Petit P, Sauvaire Y, Ribes G. 4- Hydroxyisoleucine: effects of synthetic and natural analogues on insulin secretion. Eur J Pharmacol 2000; 390(3):339-45
- 18. Christophe Broca, René Gross, Pierre Petit, Yves Sauvaire, Michèle Manteghetti, Michel Tournier et al. 4-Hydroxyisoleucine: Experimental evidence of its insulinotropic and antidiabetic properties. Am J Physiol Endocrinol Metab 1999; 277:E617-E623.
- 19. Yeh GY, Eisenberg CM, Captohuk TJ and Phillips RS. Systematic review of herbs and dietary supplements of glycemic control in diabetes. Diabetes Care 2003; 26: 1277–1294.
- 20. Viayakumar MV, Bhat MK, Hypoglycemic effect of a novel dialysed fenugreek seeds extracts is sustainable and is mediated in part by the activitation of hepatic enzymes. Phytother Res 2008; 22(4): 500–505.
- 21. Gopalpura PB, Jayanthi C and Dubey S, Effect of Trigonella foenum-graecum seeds on the glycemic index of food: A clinical evaluation. Int J Diab Dev Ctries 2007; 27(2): 41-45.
- 22. Ylonen K, Saloranta C, Kronberg-Kippila C, Groop L, Aro A and Virtanen SM, Associations of dietary fiber with glucose metabolism in non diabetic relatives of subjects with type 2 diabetes. The Botania Dietary study. Diab Care 2003; 26:1979-1985.
- 23. Evans AJ, Hood RL, oakenfull DG & Sidhu GS. Relationship between structure and function of dietary fibre:a comparative study of the effects of three galactomannans on cholesterol metabolism in the rat. British Journal of Nutrition 1992; 68,217-229.
- 24. Khaled Hamden, Bassem Jaouadi, Serge Carreau, Samir Bejar, and Abdelfattah Elfeki. Inhibitory Effect of Fenugreek Galactomannan on Digestive Enzymes Related to Diabetes, Hyperlipidemia, and Liver-kidney Dysfunctions. Biotechnology and Bioprocess Engineering 2010; 15:407-413.
- 25. S Sinha, AK Gupta, K Bhatt. Uptake and translocation of metals in fenugreek grown on soil amended with tannery sludge: Involvement of antioxidants. Ecotoxicol Environ Saf 2007; 67:267-277.
- 26. N Venkatesan, SN Devaraj, H Devaraj. A fiber cocktail of fenugreek, guar gum and wheat bran reduces oxidative modification of LDL induced by an atherogenic diet in rats. Moll Cell Biochem 2007; 294:145-153.
- 27. A Amin, A Alkaabi, S Al-Falasi, SA Daoud. Chemopreventive activities of *Trigonella foenum graecum* (Fenugreek) against breast cancer. Cell Biol Int 2005; 29:687-694.
- 28. B Bin-Hafeez, R Haque, S Parvez, S Pandey, I Sayeed, S Raisuddin. Immunomodulatory effects of fenugreek (*Trigonella*

Bhaktha Geetha et al / IJRAP 2011, 2 (4) 1231-1234

- foenum graecum L.) extract in mice. Int Immunopharmacol 2003; 3:257-265.
- 29. R Randhir, YT Lin, K Shetty. Phenolics, their antioxidant and antimicrobial activity in dark germinated fenugreek sprouts in response to peptide and phytochemical elicitors. Asia Pac J Clin Nutr 2004; 13:295-307.
- 30. R.S. Pandian, C.V. Anuradha, P. Viswanathan. Gastroprotective effect of fenugreek seeds (*Trigonella foenum graecum*) on experimental gastric ulcer in rats. J Ethnopharmacol 2002; 81:393-407
- 31. Handa K Yamaguchi, Y Sono, K Yazawa. Effects of fenugreek seed extract in obese mice fed a high-fat diet. Biosci Biotechnol Biochem 2005; 69:1186-1188.
- 32. P Sowmya, P Rajyalakshmi. Hypocholesterolemic effect of germinated fenugreek seeds in human subjects. Plant Foods Hum Nutr 1999; 53:359-365.

- 33. E Basch, C Ulbricht, G Kuo, P Szapary, M Smith. Therapeutic applications of fenugreek. Altern Med Rev 2003; 8:20-27.
- 34. B Annida, P Stanely Mainzen. Supplementation of fenugreek leaves lower lipid profile in streptozotocin-induced diabetic rats. J Med Food, 2004; 7:153-156.
- 35. GA Jelodar, M Maleki, MH Motadayen, S Sirus. Effect of fenugreek, onion and garlic on blood glucose and histopathology of pancreas of alloxan-induced diabetic rats. Indian J Med Sci 2005; 59:64-69.
- 36. BC Ruby, SE Gaskill, D Slivka, SG Harger. The addition of fenugreek extract (*Trigonella foenum-graecum*) to glucose feeding increases muscle glycogen resynthesis after exercise. Amino Acids. 2005; 28:71-76.
- 37. MZ Gad, MM El-Sawalhi, MF Ismail, ND El-Tanbouly. Biochemical study of the anti-diabetic action of the Egyptian plants Fenugreek and Balanites. Mol Cell Biochem 2006; 28:173-83.

Table 1: Laboratory parametric values of subjects receiving fenugreek seed powder with exercise

Parameters	Initial	After 2 months	P Value
FBS	226.95±32.81	206.79±63.33	.0001***
CHOLESTROL	208.32±25.29	198.53±23.50	.0001***
TG	258.63±38.10	239.32±36.21	.0001***
HDL	39.91±5.09	44.91±5.10	-
LDL	116.74±23.61	105.74±22.36	.0001***
VLDL	51.68±7.68	47.89±7.24	.0001***
AIP	0.81±0.08	0.72±0.07	.0001***

***Highly significant

Table 2: Laboratory parametric values of subjects with diet control

Parameters	Initial	After 2 months	P Value
FBS	209.42±63.01	200.32±63.33	.0361*
CHOLESTROL	218.32±32.23	218.21±32.80	.9689 ^{NS}
TG	218.32±32.71	209.37±35.29	.002**
HDL	37.58±3.72	36.89±3.74	.5539 ^{NS}
LDL	137.05±32.88	139.37±34.90	.4632 ^{NS}
VLDL	43.68±6.56	41.95±7.14	.0038**
AIP	0.76±0.09	0.75±0.08	.38 ^{NS}

*Significant, ** Moderately significant, NS: Not significant

 $Table \ 3: Comparison \ between \ the \ lab \ parametric \ values \ of \ subjects \ receiving \ fenugreek \ and \ on \ diet \ control \ after \ 2 \ months$

Parameters	Fenugreek consumed group	Diet control group
FBS	206.79±63.33	200.32±63.33 ^{NS}
CHOLESTROL	198.53±23.50	218.21±32.80*
TG	239.32±36.21	209.37±35.29*
HDL	44.91±5.10	36.89±3.74***
LDL	105.74±22.36	139.37±34.90**
VLDL	47.89±7.24	41.95±7.14*
AIP	0.72±0.07	0.75 ± 0.08^{NS}

***Highly significant, **Moderately significant, *Significant, NS: Not significant

Source of support: Nil, Conflict of interest: None Declared