IN VITRO EFFECTS OF CEFTRIAXONE ON GROWTH OF HUMAN RHABDOMYOSARCOMA (RD) AND ON RAT EMBRYO FIBROBLASTS (REF) CELL LINES

Nada N. Al-Shawi*
Assistant Professor, Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad- Iraq

Received on: 22/10/12 Revised on: 30/11/12 Accepted on: 15/12/12

*Corresponding author
E-mail: nadaalshawi@yahoo.com
DOI: 10.7897/2277-4343.04121
Published by Moksha Publishing House. Website www.mokshaph.com
All rights reserved.

ABSTRACT
Many reports demonstrated that antibiotics like cefazoline, ciprofloxacin, trimethoprim-sulfamethoxazole and others have the ability to inhibit growth of various cell lines. Thus, this study was designed to investigate whether or not ceftriaxone may possess cell growth inhibition using in vitro study and utilizing two cell lines (human rhabdomyosarcoma (RD) and rat embryo fibroblasts (REF). Various concentrations of Ceftriaxone (62.5, 125, 250, 500 and 1000 mcg/ml) were utilized in this study. The drug relatively caused concentration-dependent inhibition on growth of the intended cell lines used in this study, where, the growth inhibition induced by the drug was statistically significant at 125 mcg/ml and above. The results obtained from this work encourage further study of the possibility of clinical application of ceftriaxone to prevent the occurrence of different tumors.

Keywords: In vitro study, ceftriaxone, RD cell lines, REF cell lines, Growth inhibition

INTRODUCTION
Ceftriaxone, a bactericidal 3rd generation cephalosporin, belongs to β-lactam group of antibiotics. It has broad spectrum activity where it acts by inhibiting bacterial cell wall of many Gram-positive and Gram negative bacteria. Rhabdomyosarcoma (RD), a cancer of connective tissues, in which the cancer cells are thought to arise from skeletal muscle progenitors. Mostly occur in areas naturally lacking in skeletal muscle, such as the head, neck, and genitourinary tract. Rat embryo fibroblast cell line (REF) was considered the most important source for the undifferentiated fibroblastic culture. Many reports demonstrated that antibiotics like cefazoline, ciprofloxacin, trimethoprim-sulfamethoxazole and others have the ability to inhibit growth of various cell lines. Thus, this study was designed to investigate whether or not ceftriaxone may possess cell growth inhibition using in vitro study and utilizing two cell lines, human rhabdomyosarcoma (RD) and transitional rat embryo fibroblasts (REF).

MATERIALS AND METHODS
Chemicals
Ceftriaxone vial 1193 mg ceftriaxone disodium salt (equivalent to 1000 mg ceftriaxone base as dry powder for injection, was freshly reconstituted in 10 ml distilled water and used in the present study as stock solution), and it was utilized to prepare different concentration (1000, 500, 250, 125 and 62.5 mcg/ml) of the drug. Other chemicals were of analytical grade.

Cell lines
Both human rhabdomyosarcoma and the transformed rat embryo fibroblast cell line were obtained from Iraqi Center for Cancer and Medical Genetic Researches (ICCMGR). They were maintained in RPMI-1640 medium supplemented with 10% heat-inactivated fetal calf serum, benzyl penicillin solution, streptomycin, nystatin and sodium bicarbonate (4.4%) with a final pH of 6.8-7.2 at 37°C in a humidified incubator with 5% CO₂.

Cytotoxicity assay
RD and REF cells, cultured as described above, were seeded on micro-titration (96-well plates at a concentration of 1X10⁴ cells/well) in quadruplet, and various concentrations of ciprofloxacin (from 62.5 to 1000 mcg/ml) were added. The cells were incubated for 24h at 37°C in 5% CO₂ atmosphere. For the last 3 h of incubation, crystal violet stain 200µl in phosphate-buffered saline (PBS) was added to each well. The plates were incubated for 20 minutes at 37°C. After incubation, excess dye removed by washing the well three times with PBS. The optical density of each well was read by using a micro-ELISA reader at a transmitting wavelength on 492nm with a spectrophotometer (ELISA multi-well Reader, Organon-teknica, Austria). The percentage of growth inhibition was calculated according to the following equation:

\[IR \% = \frac{A - B}{A} \times 100 \]

IR = inhibition rate, A = optical density of control (zero) concentration, B = optical density of each drug concentration.

Furthermore, digitalized camera was utilized to take pictures concerning the possible changes in growth of each cell line exposed to ceftriaxone and compared that with cells not exposed to the drug.

Statistical analysis
Data were analyzed by 2-way analysis of variance with ANOVA. Data are presented as means ± SD. The level of significance (p<0.05) was used for analysis of variance in all results presented in this study.
Table 1: The effects of different concentration of ceftriaxone on growth of human Rhabdomyosarcoma (RD) cell line

<table>
<thead>
<tr>
<th>Concentration (mcg/ml)</th>
<th>Inhibition rate (mean±SD)</th>
<th>% of Growth Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (0)</td>
<td>0.362±0.047</td>
<td>6.629</td>
</tr>
<tr>
<td>Ceftriaxone 62.5</td>
<td>A : 0.386±0.0174</td>
<td>34.806</td>
</tr>
<tr>
<td>Ceftriaxone 125</td>
<td>B, * : 0.236±0.0453</td>
<td>86.187</td>
</tr>
<tr>
<td>Ceftriaxone 250</td>
<td>C, * : 0.05±0.0051</td>
<td>68.701</td>
</tr>
<tr>
<td>Ceftriaxone 500</td>
<td>B, * : 0.113±0.0393</td>
<td>86.87</td>
</tr>
</tbody>
</table>

- Non-identical capital letters (A, B and C) are considered significant (P<0.05) among RD cell lines exposed to different concentrations of ceftriaxone.

- * P<0.05: significant difference compared to untreated cell (control).

- Negative results of the % growth inhibition indicate proliferation.

- Positive results of the % growth inhibition indicate anti-proliferation.

Table 2: The effects of different concentration of ceftriaxone on growth of rat embryo fibroblast (REF) cell line

<table>
<thead>
<tr>
<th>Concentrations (mcg/ml)</th>
<th>Inhibition rate (Mean ± SD)</th>
<th>% of growth inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (0)</td>
<td>0.279 ± 0.005</td>
<td>29.391</td>
</tr>
<tr>
<td>Ceftriaxone 62.5</td>
<td>A, * : 0.361±0.0195</td>
<td>18.996</td>
</tr>
<tr>
<td>Ceftriaxone 125</td>
<td>B, * : 0.226±0.0194</td>
<td>62.007</td>
</tr>
<tr>
<td>Ceftriaxone 250</td>
<td>B, * : 0.106±0.0215</td>
<td>59.498</td>
</tr>
<tr>
<td>Ceftriaxone 500</td>
<td>B, * : 0.113±0.0925</td>
<td>80.645</td>
</tr>
<tr>
<td>Ceftriaxone 1000</td>
<td>C, * : 0.054±0.0043</td>
<td>86.87</td>
</tr>
</tbody>
</table>

- Non-identical capital letters (A, B and C) are considered significant (P<0.05) among REF cell lines exposed to different concentrations of ceftriaxone.

- P<0.05: significant difference compared to un-treated cells (control).

- Negative results of the % growth inhibition indicate proliferation.

- Positive results of the % growth inhibition indicate anti-proliferation.
RESULTS
Table 1 demonstrated the results of various concentrations (from 62.5 to 1000) of ceftriaxone each applied to RD cell lines for 48hrs. There was no significant growth inhibition provoked by 62.5mcg/ml ceftriaxone concentration compared to cells not exposed to the drug (P>0.05); while, there were significant growth inhibition observed at 125, 250, 500 and 1000mcg/ml drug concentration (P<0.05) on the RD cell line compared to cells not treated with the drug (0 µg/ml). The percent of growth inhibition were 34.806, 86.187, 68.701 and 86.87%, respectively. (Table 1)

Concerning morphologic features of RD cell lines, figure 2 demonstrated that maximum concentration of ceftriaxone (1000mcg/ml) used in this study caused feature loss of RD cell line exposed to the drug for 48hrs with marked decrease in viability cell number of the intended cell line in comparison with confluent monolayer and cohesiveness of RD before exposure to such concentration of the drug. (Figure 1)

The results of this study demonstrated that the intended concentrations of ceftriaxone caused similar effects which were observed concerning REF cell lines; where, there was no significant growth inhibition provoked by 62.5 mcg/ml ceftriaxone concentration compared to cells not exposed to the drug (P>0.05); while, there were significant growth inhibition observed at 125, 250, 500 and 1000mcg/ml drug concentration (P<0.05) on the REF cell line compared to cells not treated with the drug (0 µg/ml). The percent of growth inhibition was 18.996, 62.007, 59.498 and 80.645%, respectively. (Table 2)

Concerning morphological features of REF cell lines, figure 4 demonstrated that maximum concentration of ceftriaxone (1000 mcg/ml) used in this study caused feature loss of REF cell line exposed to the drug for 48 h with marked decrease in viability cell number of the intended cell line in comparison with confluent monolayer and cohesiveness of RD before exposure to such concentration of the drug. (Figure 3)

DISCUSSION
Many authors have been reported that antibiotics likecefazolin, ciprofloxacine, co-trimoxazole and moxifloxacin have the ability to inhibit growth utilizing various cell lines4-5. But, there was no In vitro study demonstrating the effect of different concentrations of ceftriaxone on growth of cell lines.

The present study revealed that when human rhabdomyosarcoma (RD) or rat embryo fibroblasts (REF) cell lines was exposed to ceftriaxone, a beta lactam antibiotic for 48 hrs produced growth inhibition relatively in concentration-dependent manner (from 125mcg to 1000mcg/ml). By comparing the result of this study with the other one which was performed on other drug, the growth inhibitory action of various concentrations of ceftriaxone on the previously-mentioned cell lines can be attributed to the sensitivity of both cell lines to the cytocytic activity of the drug6.

Cephalosporins are beta lactam-containing compounds, used for treatment of bacterial infection10. They have also been used in selective targeting of anticancer compounds to tumor cells utilizing antibody-directed enzyme prodrug therapy (ADEPT)13-15. In addition, there are many types of antibiotics (e.g. anthracyclines, bleomycin) that have been used to treat cancer. However, research into the possibility of utilizing beta-lactam antibiotics as potential anticancer medications has been relatively non-existent. It has been demonstrated that beta-lactams could play a role as anticancer drugs16, 17.

The results of this In vitro study may provide an additional evidence for the effect of various concentrations of ceftriaxone on growth of two cell lines, (RD and REF) used in this study, where a concentration-dependent anti-proliferative effects of ceftriaxone were observed; thus, ceftriaxone may prove useful as a potential preventive and/or therapeutic agent as an anticancer agent. Further studies are needed to completely assess the antiproliferative effect of the drug utilizing In vivo model.

REFERENCES
15. Senter PD and CJ Springer. Selective activation of anti-cancer prodrugs by monoclonal antibody-enzyme conjugates. Adv Drug Deliv...

Cite this article as:

Source of support: Nil, Conflict of interest: None Declared